HERZ - Ball valves for heating and chilled water
 Datasheet collection

Datasheet $\mathbf{1} \mathbf{X X X X} \mathbf{X X}$, Issue 0616
Table of contents

- General information about HERZ - Ball valves for heating and chilled water
- HERZ - Ball valve MODUL (1 22XX XX)... 5

DN 15 - DN 50

- HERZ - Ball valve MODUL DZR (1 22X6 XX).. 8

DN 15 - DN 50

- HERZ - Heavy Type ball valve (1 21XO XX).

DN 8 - DN 80

- HERZ - Ball valve with drain cock and plug (1 2402 XX)

DN 15 - DN 40

- HERZ - Three port ball valve (1 2412 01).

DN 15

- HERZ - Ball valve with lever handle DZR (1 2190 OX).

DN 15 - DN 50

- HERZ - Ball valve with extended spindle DZR (1 2190 2X).

DN 15 - DN 50

- HERZ - Ball valve with compression ends (1 2190 4X (6X)).

DN 15 - DN 50

- HERZ - Multifunction Ball Valve DZR (1 241X 0X).. 24

DN 20 - DN 32

- HERZ - Ball valve for pump (1 226X 03)... 28 DN 25
- HERZ - Ball valve spare parts. .31

HERZ - ball valves for heating and chilled water

Q Description of HERZ ball valves for heating and chilled water

HERZ ball valves for heating and chilled water are high quality products that are assembled and pressure tested during the manufacturing process under constant quality control.

Advantages of HERZ ball valves for heating and chilled water are:

- all integrated components are the result of our own development,
- possibility of high pressure, high or low temperature and high flow of medium,
- easy to use and maintain,
- reliable design and long service life,
- permanent quality control of production in our own factories,
- easy installation.

- Field of application

HERZ ball valves have to be used as shut off elements. Field of application are building services, such as heating or chilled water plants. Ball valves are used wherever the medium flow has to be reliably closed. Ball valve should not be used as regulating element so it has to be fully opened or fully closed (the handle should not be in intermediate position). All of HERZ ball valves have additional application advantages and features. Informations about this can be found in individual data sheets which are presented in this data sheet collection.

- Assembly instruction

The threads of the pipe have to be coated with a suitable sealing material (spinning material, Teflon ribbon, sealing paste). There should not be excess of sealing material on the pipe because it can damage the thread. The ball valve with thread (G, R) is screwed onto the pipe. The pipes have to be correctly alligned, so the valve is not loaded with a bending moment. When using cooper or plastic pipes take into account pressure and temperature limits of used material. When assembling, use a suitable assembly tool that adapts to valve end connections (Sw, Sw1). The ball valve can be mounted in any position: horizontal, vertical or upside-down. Following assembly, the connections of ball valve must be checked for water-tightness by the installer. All engineering standards and recognised regulations must be adhered by these specialist staff. If there are impurities in the medium (water too hard, dust, etc.) there should be a filter installed, in other case the impurities can damage the seals in the valve. Some of HERZ ball valves have additional assembly instructions. Informations about this can be found in individual data sheets which are presented in this data sheet collection.

- Brass

HERZ use top-quality brass that responds to the latest European norms DIN EN 12164, DIN EN 12165 and DIN EN 1982. Housings of ball valves are made from brass due to its good strenght, excellent corrosion resistance and variety of other properties. Please note that some of the ball valves are made from CW602N and CW626N because this material has DZR properties (dezinfication resistant brass).

0 Function principle

Inspect the position of the handle to see whether the ball valve is opened or closed. It is opened if the handle is aligned with the pipe and it is closed if the handle is positioned perpendicularly to the pipe. Open or close the ball valve by rotating the handle for 90°.

- Maintenance instruction

When the ball valve for heating and chilled water is installed, it does not require any special maintenance. It is recommended to close and open the ball valve periodically (at least twice a year).

- Disposal instruction

The disposal of HERZ ball valves for heating and chilled water must not endanger the health or the enviroment. National legal regulations for proper disposal of the HERZ ball valves for heating and chilled water have to be followed.

Diagrams

$\mathbf{D N}$	8	10	15	20	25	32	40	50	65	80
$\mathbf{K v}$ $\left[\mathrm{m}^{3} / \mathrm{h}\right]$	7	9	17	34	55	102	165	270	450	780
Kvp $\left[\mathrm{m}^{3} / \mathrm{h}\right]$	6,5	8,4	15,8	31,5	51	95	153	250	418	728

Kv: Outflow characteristic ($\mathrm{m} 3 / \mathrm{h}$) - is the flow of water at temperature $15.5^{\circ} \mathrm{C}$, a pressure drop of $1 \operatorname{bar}(100 \mathrm{kPa})$ and a fully open valve
Kvp: Outflow characteristic $(\mathrm{m} 3 / \mathrm{h})$ - is the flow of air with density of $1,16 \mathrm{~kg} / \mathrm{m} 3$ at temperature $15.5^{\circ} \mathrm{C}$, a pressure drop of $1 \mathrm{mbar}(0,1 \mathrm{kPa})$ and a fully open valve.

HERZ - Ball valve MODUL

Datasheet 1 220X XX
© Dimensions

12201 21(26)

1221101 (06) (PN16)

12211 11(14)(PN16)

12211 21(26)(PN16)

12211 31(34)(PN16)

12201 51(56)

12201 61(66)
12201 71(76)

1222801 (06)

HERZ - Ball valves for heating and chilled water data sheet collection

DN	PN	PN1 [bar]	$\underset{\mid \mathrm{SO} 028}{\mathbf{G}}$	$\mathbf{H}_{[S 07 / 4]}^{\mathbf{R}_{1}}$	$\underset{[m m]}{\mathbf{L}}$	L1	$\underset{[\mathrm{mm}]}{\mathrm{L} 2}$	\mathbf{C}	$\underset{[m m]}{E}$	$\underset{[m m]}{\mathbf{A}}$	$\underset{[m m}{\mathbf{B}}$	B1 [mm	$\underset{[\mathrm{mm}]}{\mathbf{H}}$	$\underset{[\mathrm{mm}]}{\mathbf{H} 1}$	$\underset{[m \mathrm{~mm}]}{\mathbf{H}}$	H3	$\underset{[\mathrm{m} 4]}{\mathrm{H} 4}$	Sw [mm	Sw1 [mm]
15	25	16	G1/2	R1/2	51	74	64	10	13	90	55	60	53	42	49	46	70	25	30
20	25	16	G3/4	R3/4	57	88	69	11	15	90	55	60	56	46	52	49	74	31	36
25	25	16	G1	R1	73	106	84	16	17	135	75	85	72	56	63	64	81	39	46
32	25	16	G5/4	R5/4	84	123	97	18	19	135	75	85	77	61	68	69	86	48	52
40	25	16	G6/4	R6/4	95	142	105	17	20	180		120	93		86		121	55	60
50	25	16	G2	R2	11	166	120	19	23	180		120	100		93		128	70	75

© Weight of ball valves

	Weight [kg]											
DN	$\begin{gathered} 12201 \\ -6 \end{gathered}$	$\begin{gathered} 1220111 \\ -4 \end{gathered}$	$\underset{-6}{12201} 21$	$\begin{gathered} 1220131 \\ -4 \end{gathered}$	$\underset{-6}{1221101}$	$\begin{gathered} 1221111 \\ -4 \end{gathered}$	$\begin{gathered} 1221121 \\ -6 \end{gathered}$	$\begin{gathered} 1221131 \\ -4 \end{gathered}$	$\underset{-6}{1220141}$	$\begin{gathered} 1220161 \\ -6 \end{gathered}$	$\begin{gathered} 1222801 \\ -6 \end{gathered}$	$\begin{gathered} 1222811 \\ -4 \end{gathered}$
15	0,170	0,163	0,178	0,170	0,232	0,225	0,250	0,230	0,172	0,206	0,195	0,188
20	0,250	0,242	0,253	0,246	0,360	0,355	0,380	0,382	0,252	0,286	0,290	0,274
25	0,458	0,440	0,486	0,458	0,680	0,670	0,700	0,669	0,460	0,475	0,506	0,500
32	0,706	0,670	0,765	0,712	1,025	1,01	1,046	1,022	0,690	0,730	0,800	0,780
40	1,186	/	1,213	/	1,612	/	1,634	/	1,136	1,152	1,186	/
50	1,958	1	2,0	1	2,628	1	2,625	1	1,926	1,954	2,125	1

M Models

1220101 (06) = IG x IG, Silumin - Lever handle
1220111 (14) = IG x IG, Silumin - T-handle
1220121 (26) = IG x IG, steel sheet - plated, lever handle
1220131 (34) = IG x IG, steel sheet - plated, T-lever
1221101 (06) = IG x connection, Silumin - lever handle
1221111 (14) = IG x connection, Silumin - T-lever
1221121 (26) = IG x connection, steel sheet - plated, lever handle
1221131 (34) = IG x connection, steel sheet - plated, T-handle
1220141 (46) = IG x IG, synthetic material - red
1220151 (56) = IG x IG, synthetic material - blue
$1220161(66)=I G \times I G$, synthetic material with thermometer - red
1220171 (76) = IG x IG, synthetic material with thermometer -blue
1222801 (06) = IG × AG, Silumin - lever handle
1222811 (14) = IG x AG, Silumin - T-handle

\square Material and construction

Body:
Ball:
Spindle:
Handles:

Ball seals:
Spindle seals:
Screw joint connector seals
(1 2211 X1 - X3):
(1 2211 X4 - X6):
Internal threaded connectors:
External threaded connectors:
forged brass acc. to EN 12165, nickel plated, CW617N
forged brass acc. to EN 12165, hollow, full bore, hard chrome plated, CW617N
machined brass acc. to EN 12164, CW614N
lever handle, red, silumin
T-handle, red, silumin
T-handle, red / blue, synthetic material PA66 GF30
T-handle with thermometer, red / blue, synthetic material PA66 GF30
lever handle, red, sheet steel - plated
T-handle, red, sheet steel - plated
PTFE
PTFE
EPDM (O-ring)
KLINGER (flat sealing)
acc. to ISO 228-1
acc. to ISO 7-1

Operating data

Max. operating pressure:
PN 25 bar, screw joint connector PN 16 bar
Min. temperature:
$-30^{\circ} \mathrm{C}$ (water $0,5^{\circ} \mathrm{C}$)
Max. temperature:
$150^{\circ} \mathrm{C}$ (water up to $110^{\circ} \mathrm{C}$ - no steam)
Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio 25-50\% is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. Please note that EPDM gaskets will be affected by Mineral oils lubricants and thus lead to failure of the EPDM seals in the valves that use EPDM seals. The HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

\square Field of application

HERZ ball valve MODUL is designed for building services such as heating and chilled water plants. The operating conditions (temperature, pressure) should be constant.

Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

© Labels on ball valve

HERZ - Ball valve MODUL DZR

0 Dimensions

DN	PN	PN1	$\underset{150228}{\mathbf{G}}$	$\mathbf{H}_{[\mid S O 7 / 4]}^{\mathbf{R}^{2}}$	$\underset{[m m]}{\mathbf{L}}$	$\underset{[m m]}{\mathbf{L 1}}$	$\underset{[m m]}{\mathbf{L 2}}$	\mathbf{C}	$\underset{[m m]}{\mathbf{E}}$	$\mathbf{A}_{1 \mathrm{~mm}}$	${ }_{[\mathrm{mm}]}^{\mathbf{B}}$	B1 [mm]	$\underset{[m \mathrm{~m}]}{\mathbf{H}}$	$\underset{[\mathrm{mm}]}{\mathrm{H} 1}$	$\begin{aligned} & \text { H2 } \\ & {[\mathrm{m} / 2} \end{aligned}$	$\mathrm{H} 3$	$\underset{[m 4]}{\mathbf{H} 4}$	Sw [mm	Sw1 [mm]
15	25	16	G1/2	R1/2	51	74	64	10	13	90	55	60	53	42	49	46	70	25	30
20	25	16	G3/4	R3/4	57	88	69	11	15	90	55	60	56	46	52	49	74	31	36
25	25	16	G1	R1	73	106	84	16	17	135	75	85	72	56	63	64	81	39	46
32	25	16	G5/4	R5/4	84	123	97	18	19	135	75	85	77	61	68	69	86	48	52
40	25	16	G6/4	R6/4	95	142	105	17	20	180	-	120	93	-	86	-	121	55	60
50	25	16	G2	R2	112	166	120	19	23	180	-	120	100	-	93	-	128	70	75

© Weight of ball valves

	Weight [kg]									
DN	$\begin{array}{\|c\|} \hline 1220601 \\ -6 \end{array}$	$\begin{gathered} 1220611 \\ -4 \end{gathered}$	$\underset{-6}{1220621}$	$\begin{gathered} 1220631 \\ -4 \end{gathered}$	$\underset{-6}{1} 221601$	$\begin{gathered} 1221611 \\ -4 \end{gathered}$	$\underset{-6}{1221621}$	$\begin{gathered} 1221631 \\ -4 \end{gathered}$	$\begin{gathered} 1220641 \\ -6 \end{gathered}$	$\begin{gathered} 1220661 \\ -6 \end{gathered}$
15	0,170	0,163	0,178	0,170	0,232	0,225	0,250	0,230	0,172	0,206
20	0,250	0,242	0,253	0,246	0,360	0,355	0,380	0,382	0,252	0,286
25	0,458	0,440	0,486	0,458	0,680	0,670	0,700	0,669	0,460	0,475
32	0,706	0,670	0,765	0,712	1,025	1,01	1,046	1,022	0,690	0,730
40	1,186	/	1,213	1	1,612	/	1,634	/	1,136	1,152
50	1,958	/	2,0	/	2,628	1	2,625	/	1,926	1,954

- Models

1220601 (06) = IG x IG, Silumin - Lever handle
1220611 (14) = IG x IG, Silumin - T-handle
1220621 (26) = IG x IG, steel sheet - plated, lever handle
1220631 (34) = IG x IG, steel sheet - plated, T-lever
221601 (06) = IG x connection, Silumin - lever handle
1221611 (14) = IG x connection, Silumin - T-lever
1221621 (26) = IG x connection, steel sheet - plated, lever handle
1221631 (34) = IG x connection, steel sheet - plated, T-handle
1220641 (46) = IG x IG, synthetic material - red
$1220651(56)=I G \times I G$, synthetic material - blue
$1220661(66)=I G \times I G$, synthetic material with thermometer - red
1220671 (76) = IG x IG, synthetic material with thermometer -blue

© Material and construction

Body:
Ball:
Spindle:
Handles:

Ball seals:

Spindle seals:
Screw joint connector seals:
(1 2211 X1 - X3)
(1 2211 X4 - X6)
Internal threaded connectors:
External threaded connectors:
forged brass acc. to EN 12165, CW602N, DZR
forged brass acc. to EN 12165, hollow, full bore hard chrome plated, CW602N, DZR machined brass acc. to EN 12164, CW614N
lever handle, red, silumin
T-handle, red, silumin
T-handle, red / blue, synthetic material PA66 GF30
T-handle with thermometer, red / blue, synthetic material PA66 GF30
lever handle, red, sheet steel - plated
T-handle, red, sheet steel - plated
PTFE
PTFE
EPDM (O-ring)
KLINGER (flat sealing)
acc. to ISO 228-1
acc. to ISO 7-1

O Operating data

Max. operating pressure:
PN 25 bar, screw joint connector PN 16 bar
Min. temperature: $-30^{\circ} \mathrm{C}$ (water $0,5^{\circ} \mathrm{C}$)
Max. temperature:

$$
150^{\circ} \mathrm{C} \text { (water up to } 110^{\circ} \mathrm{C} \text { - no steam) }
$$

Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. Please note that EPDM gaskets will be affected by Mineral oils lubricants and thus lead to failure of the EPDM seals in the valves that use EPDM seals. The HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

© Field of application

HERZ - ball valve MODUL DZR is designed for building services such as heating and chilled water plants. The operating conditions (temperature, pressure) should be constant. HERZ ball valve MODUL DZR is made from CW602N; this material has DZR properties (dezinfication resistant brass).

© Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

© Labels on ball valve

© Dimensions

HERZ - Ball valves for heating and chilled water data sheet collection

$\mathbf{D N}$	$\mathbf{P N}$ $[$ bar $]$	\mathbf{G} $[\mathrm{in}]$	\mathbf{L} $[\mathbf{m m}]$	$\mathbf{L 1}$ $[\mathbf{m m}]$	$\mathbf{L 2}$ $[\mathbf{m m}]$	\mathbf{C} $[\mathbf{m m}]$	\mathbf{E} $[\mathbf{m m}]$	\mathbf{A} $[\mathbf{m m}]$	\mathbf{B} $[\mathbf{m m}]$	\mathbf{H} $[\mathrm{mm}]$	$\mathbf{H 1}$ $[\mathrm{mm}]$	$\mathbf{S w}$ $[\mathbf{m m}]$
8	63	$1 / 4$	43	52	61	10,5	9	60	40	45	41	17
10	63	$3 / 8$	45	54	63	11	9	60	40	56	43	21
15	50	$1 / 2$	59	72	85	15	13	90	55	53	47	25
20	50	$3 / 4$	65	77	89	16	13	90	55	57	53	32
25	50	1	80	95	110	19	15	135	75	77	57	41
32	40	$1-1 / 4$	91	106	122	19,5	16	135	75	81	60	48
40	40	$1-1 / 2$	104	120	136	22	16	180	$/$	96	$/$	55
50	40	2	125	142	159	25	17	180	$/$	101	$/$	70
65	16	$2-1 / 2$	146	$/$	$/$	25	$/$	210	$/$	124	$/$	85
80	16	3	179	$/$	$/$	28	$/$	210	$/$	134	$/$	100

- Weight of ball valves [kg]

$\mathbf{D N}$	$1 \mathbf{2 1 0 0} 00(09)$	$1 \mathbf{2 1 0 0} 10(19)$	$1 \mathbf{2 1 6 0} 00(09)$	$1 \mathbf{2 1 6 0 1 0 (1 9)}$	$1 \mathbf{2 1 8 0} 00(09)$	$1 \mathbf{2 1 8 0 1 0 (1 9)}$
8	0,120	0,118	0,130	0,122	0,130	0,125
10	0,140	0,138	0,156	0,138	0,178	0,174
15	0,230	0,230	0,260	0,260	0,300	0,290
20	0,350	0,350	0,400	0,400	0,440	0,434
25	0,660	0,640	0,744	0,718	0,820	0,800
32	0,950	0,930	1,100	1,065	1,217	01,165
40	1,640	$/$	1,178	$/$	1,834	$/$
50	2,780	$/$	3,000	$/$	3,100	$/$
65	4,760	$/$	$/$	$/$	$/$	$/$
80	6,200	$/$	$/$	$/$	$/$	

\square Index of order numbers
When selecting the valve, please note the last number of the order number from the table below (12100 0X / 12100 1X / $121600 \mathbf{0} / 121601 \mathbf{1} / 121800 \mathbf{0} / 121801 \mathbf{X})$

	DN8	DN10	DN15	DN20	DN25	DN32	DN40	DN50	DN65	DN80
\mathbf{X}	9	0	1	2	3	4	5	6	7	8

- Models of ball valves
$1210000(09)$ = internal / internal thread, handle silumin lever handle red
1210010 (19) = internal / internal thread, handle silumin T-handle red
$1216000(09)$ = internal/external, handle silumin lever handle red
1216010 (19) = internal/external, handle silumin T-handle red
$218000(09)=$ external / external thread, handle silumin lever handle red
1218010 (19) = external / external thread, handle silumin T-handle red

Material and construction

Body (1 2100 X0 - X4, X9):
Body (1 210X X7 - X8):
Ball (1 2100 X0 - X4, X9):
Ball (1 210X X7 - X8):
Spindle:
Handles:
Ball seals:
Spindle seals:
Internal threaded connectors:
forged brass acc. to EN 12165, CW617N
casted brass acc. to EN 1982, CW617N
forged brass acc. to EN 12165, hollow, full bore, hard chrome plated, CW617N casted brass acc. to EN 1982, hollow, full bore, hard chrome plated, CW617N machined brass acc. to EN 12164, CW614N
lever handle, red, silumin
T-handle, red, silumin
PTFE
PTFE
acc. to ISO 228-1

Operating data

Max. operating pressure: see table above
Min. temperature:

```
see table above
150 C (water up to 110 % C - no steam)
```

Max. temperature:

Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

- Field of application

Ball valve heavy type is designed for heating and cooling systems which have to withstand continuously changing working system parameters. It allows safe system operation even under conditions of significant changes of medium temperatures and sudden pressure loads. The ball valve is bi-directional, that means it allows flow of the medium in both directions.

© Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

Q Labels on ball valve

HERZ - Ball valve

with drain cock and plug
Data sheet 12402 XX

- Dimensions

12402 OX

12402 1X

Order Nr.	DN	PN	$\underset{[i n]}{\mathbf{G}}$	$\begin{aligned} & \text { G1 } \\ & {[\mathrm{inn}]} \end{aligned}$	$\underset{[m m]}{\mathbf{L}}$	$\underset{[\mathrm{mm}]}{\mathrm{L} 1}$	$\underset{[\mathrm{mm}]}{\mathbf{H}}$	$\underset{\text { Ami }}{\mathbf{A}}$	Sw $[\mathrm{mm}]$	Sw1 [mm]	Weight [kg]
1240201	15	40	1/2"	1/8"	67	12	42	70	26	11	0,26
1240202	20	40	3/4"	1/8"	71	14	49	90	32	11	0,38
1240203	25	40	1"	1/8"	85	16	61	135	41	11	0,70
1240204	32	40	1-1/4"	1/8"	101	26	65	135	50	11	0,11
1240205	40	25	1-1/2"	1/8"	106	21,4	84	180	55	11	1,44
1240211	15	40	1/2"	1/8"	67	12	42	60	25	11	0,26
1240212	20	40	3/4"	1/8"	71	14	45	60	32	11	0,38
1240213	25	40	1"	1/8"	85	16	63	85	41	11	0,68
1240214	32	40	1-1/4"	1/8"	101	26	67	85	50	11	0,11

Material and construction

Body:
Ball:
Spindle:
Plug handle:
Handles:
Ball seals:
Spindle seals:
Internal threaded connectors:
forged brass acc. to EN 12165, nickel plated, CW617N
forged brass acc. to EN 12165, hollow, full bore, hard chrome plated, CW617N machined brass acc. to EN 12164, CW614N
synthetic material
steel sheet - plated, lever handle, red
steel sheet - plated, T-handle, red
PTFE
NBR
acc. to ISO228

O Operating data

Max. operating pressure:
Min. operating temperature:
Max. operating temperature: Medium:
see table above
$-10^{\circ} \mathrm{C}$ (water 0,5 ${ }^{\circ} \mathrm{C}$)
$80^{\circ} \mathrm{C}$

Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

© Field of application

HERZ ball valve with drain cock and plug is used in building services such as heating and chilled water plants. Due to the special valve design it is possible to shut-off and drain the system. A plug is mounted at the outlet (G1). In case of draining the installation close the ball valve and then empty the medium by draining. Before refilling the installation the draining tap must be closed.

\square Assembly instruction

The arrow on the housing indicates the medium flow direction, it is necessary to pay attention to the correct valve orientation during assembly.

$\boxed{\square}$ Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

© Labels on ball valves

1240201 (07)
1240211 (13)

1240205

HERZ - Three port ball valve

- Dimensions

Order Nr.	DN	\mathbf{G} $[\mathrm{in]}$	\mathbf{L} $[\mathrm{mm}]$	\mathbf{C} $[\mathrm{mm}]$	\mathbf{A} $[\mathrm{mm}]$	\mathbf{H} $[\mathrm{mm}]$	$\mathbf{H 1}$ $[\mathrm{mm}]$	Sw	Weight $[\mathrm{kg}]$
$1 \mathbf{2 4 1 2 0 1}$	15	$1 / 2$	59	15	90	54	32	25	0,374

Material and construction

Body:
Ball:
Spindle:
Handle:
Ball seals:
Spindle seals:
Internal threaded connectors:
forged brass acc. to EN 12165, nickel plated, CW617N
forged brass acc. to EN 12165, L bore, hard chrome plated, CW617N
machined brass acc. to EN 12164, CW614N
Lever handle, red, silumin
PTFE
PTFE
acc. to ISO 228

O Operating data

Max. operating pressure:
Min. operating temperature:
Max. operating temperature:

PN 40 bar
$-30^{\circ} \mathrm{C}$ (water $0,5^{\circ} \mathrm{C}$)
$+150^{\circ} \mathrm{C}$ (water $110^{\circ} \mathrm{C}$-no steam)

Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

© Field of application

The ball with a T-shape flow apening allows different ways of closing - opening the flow direction. For more detailed usage of three-way ball valve see picture below.

© Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

© Labels on ball valve

HERZ - Ball valve

with lever handle DZR
Data sheet 12190 OX
\square Dimensions

Order Nr.	DN	$\mathbf{P N}$	$\mathbf{R p}$ $[\mathbf{i n}]$	\mathbf{L} $[\mathbf{m m}]$	$\mathbf{L 1}$ $[\mathbf{m m}]$	\mathbf{H} $[\mathbf{m m}]$	\mathbf{A} $[\mathbf{m m}]$	$\mathbf{S w}$ $[\mathbf{m m}]$	Weight $[\mathrm{kg]}$
$\mathbf{1 2 1 9 0} 01$	15	50	$1 / 2^{\prime \prime}$	59	13	53	90	25	0,24
$\mathbf{1 2 1 9 0} 02$	20	50	$3 / 4^{\prime \prime}$	65	14	56	90	32	0,36
$\mathbf{1 2 1 9 0} 03$	25	50	$1{ }^{\prime \prime}$	80,5	16,5	77	135	41	0,67
$\mathbf{1 2 1 9 0} 04$	32	40	$1-1 / 4^{\prime \prime}$	91	17	81	135	48	0,95
$\mathbf{1 2 1 9 0} 05$	40	40	$1-1 / 2^{\prime \prime}$	104	19,5	95	180	55	1,67
$\mathbf{1 2 1 9 0} 06$	50	40	$2^{\prime \prime}$	125,5	22,5	101	180	70	2,78

@ Material and construction

Body:
Ball:
Spindle:
Handles:
Ball seals:
Spindle seals:
Internal threaded connectors:

Operating data

Max. operating pressure:
Min. operating temperature:
Max. operating temperature:
forged brass acc. to EN 12165, nickel plated, CW602N DZR
forged brass acc. to EN 12165, hollow, full bore, hard chrome plated, CW617N machined brass acc. to EN 12164, CW614N
lever handle, red, silumin
PTFE
PTFE
acc. to ISO228
see table above
$-30^{\circ} \mathrm{C}$ (water $0,5^{\circ} \mathrm{C}$)
$150^{\circ} \mathrm{C}$ (water $110^{\circ} \mathrm{C}$ - no steam)

Medium:
Heating water quality according to ONORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

© Field of application

HERZ ball valve with lever handle DZR is designed for heating and cooling systems which have to withstand continuously changing working system parameters. It allows safe system operation even under conditions of significant changes of medium temperatures and sudden pressure loads. HERZ ball valve with lever handle DZR is made from CW602N; this material has DZR properties (dezinfication resistant brass). The ball valve is bi-directional, that means it allows flow of the medium in both directions.

\square Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

Labels on ball valve

HERZ - Ball valve with extended spindle DZR

Data sheet 12190 2X

- Dimensions

Order Nr.	DN	\mathbf{G} $[\mathbf{i n]}$	\mathbf{L} $[\mathbf{m m}]$	$\mathbf{L 1}$ $[\mathbf{m m}]$	\mathbf{H} $[\mathbf{m m}]$	\mathbf{A} $[\mathbf{m m}]$	$\mathbf{S w}$ $[\mathbf{m m}]$	Weight $[\mathbf{k g]}$
$\mathbf{1 2 1 9 0} 21$	15	$1 / 2^{\prime \prime}$	59	15	90	90	25	0,28
$\mathbf{1 2 1 9 0} 22$	20	$3 / 4^{\prime \prime}$	64	16	93	90	32	0,40
$\mathbf{1 2 1 9 0} 23$	25	$1^{\prime \prime}$	80,5	19	107	135	41	0,74
$\mathbf{1 2 1 9 0} 24$	32	$1-1 / 4^{\prime \prime}$	91	19,5	111	135	48	0,96
$\mathbf{1 2 1 9 0} 25$	40	$1-1 / 2^{\prime \prime}$	100	19,7	136	180	55	1,38
$\mathbf{1 2 1 9 0} 26$	50	$2^{\prime \prime}$	118	22,3	144	180	69	2,52

Material and construction

Body:
Ball:
Spindle:
Handle:
Ball seals:
Spindle seals:
Internal threaded connectors:

O Operating data

Max. operating pressure:
Min. operating temperature:
Min. short-term temperature load:
Max. operating temperature:
Max. short-term temperature load:
Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. Please note that EPDM gaskets will be affected by Mineral oils lubricants and thus lead to failure of the EPDM seals in the valves that use EPDM seals. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

© Field of application

HERZ ball valve with extended spindle DZR is designed for building services such as heating or chilled water plants. The operating conditions (temperature, pressure) should be constant. Extended spindle allows easy installation of thicker insulation. The handle is isolated seperately so that the valve can be opened and closed without breaking or damaging the insulation. HERZ ball valve with extended spindle DZR is made from CW602N; this material has DZR properties (dezinfication resistant brass). The ball valve is bi-directional, that means it allows flow of the medium in both directions.

Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

Labels on ball valve

1219021 (24)
1219025 (26)
© Dimensions

Model	DN	$\underset{\text { [barl }}{\text { PN }}$	Cu	$\underset{[m \mathrm{~m}]}{\mathrm{C}}$	$\begin{gathered} \mathbf{L} \\ {[\mathrm{mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{L} 1}$	$\underset{[m \mathrm{~m}]}{\mathrm{H}}$	$\underset{[m \mathrm{~m}]}{\mathbf{A}}$	Sw
1219041	15	16	15	15,2	76,5	35,5	47	90	24
1219042	20	16	22	22,2	81	37	49	90	32
1219043	25	16	28	28,1	95	44,4	61	135	37
1219044	32	16	35	35,1	108,5	54,6	65	135	46
1219045	40	16	42	42,2	122	60	84	180	60
1219046	50	16	54	54,4	134	72	90	180	70
1219061	15	16	15	15,2	76,5	35,5	94	90	24
1219062	20	16	22	22,2	81	37	97	90	32
1219063	25	16	28	28,1	95	44,4	110	135	37
1219064	32	16	35	35,1	108,5	54,6	114	135	46
1219065	40	16	42	42,2	122	60	135	180	60
1219066	50	16	54	54,4	134	72	142	180	70

- Material and construction

Body:
Ball:
Spindle:
Handles:
Ball seals:
Spindle seals:
(Operating data
Maximum pressure:
Temperature range:
Construction and tests:
forged brass acc. to EN 12165, CW602N, DZR
forged brass acc. to EN 12165, hollow, full bore hard chrome plated, CW602N, DZR machined brass acc. to EN 12164, CW614N
lever handle, red, sheet steel - plated
PTFE
EPDM

16 bar ($20^{\circ} \mathrm{C}$)
$120^{\circ} \mathrm{C}$ (5 bar)
WRAS approved

© Field of application

HERZ - ball valve with compression ends is designed for easy and fast installation of the valve in the pipe network. It is suitable for heating and chilled water systems where the pipes are made from copper, carbon steel and stainless steel.
Tightening pipe connection system is made from components that allow quick installation without special tools and sealing materials. It enables effective seal and easy adjustment of the position of the ball valve in the pipe network.

© Instruction for assembling and maintenance

Ensure that the tube has been cut straight and deburred properly leaving no sharp edges. Insert the tube firmly into the compression fitting, ensuring that the compression ring seats centrally and that the tube makes firm contact in the bottom of the valve housing.

Hand tighten the nut then, using a suitable spanner, further tighten a $3 / 4$ turn $\left(270^{\circ}\right)$ for sizes 15 mm to 42 mm and one full turn for 54 mm , ensuring the valve body is secured with a suitable tool. A light oil can be used on the threads to assisttightening. If sealant paste is required, use a suitable WRAS approved PTFE based compound.

© Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

© Lables on ball valves

HERZ - Multifunctional ball valve DZR

Data sheet 1 241X 0X

- Dimensions

Order Nr.	DN	$\underset{\text { Rin] }}{\underset{\text { Rp }}{ }}$	$\begin{gathered} \text { G1 } \\ {[\mathrm{mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{G} 2}$	$\underset{[m m]}{\mathbf{L}}$	$\begin{gathered} \mathrm{L1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathbf{H}}$	Sw1 [mm]	Sw2 [mm]	Sw3 [mm]	Colour	Weight [kg]
1241402	20	3/4"	$1{ }^{\prime \prime}$	3/8"	75	70	71	31	37	21	Red	0,62
1241403	25	1"	1-1/4"	1/2"	96	98	78	41	46	26	Red	1,275
1241404	32	1-1/4"	1/2"	1/2"	109	113	83	50	52	26	Red	1,712
1241502	20	3/4"	$1{ }^{1}$	3/8"	75	70	71	31	37	21	Blue	0,62
1241503	25	1"	1-1/4"	1/2"	96	98	78	41	46	26	Blue	1,275
1241504	32	1-1/4"	1/2"	1/2"	109	113	83	50	52	26	Blue	1,712

(0) Material and construction

Body:
Ball:
Spindle:
Handles:
Ball seals:
Spindle seals:
Internal threaded connectors:
Internal threaded connectors:
forged brass acc. to EN 12165, CW626N, DZR
forged brass acc. to EN 12165, T-bore, hollow, hard chrome plated, CW626N, DZR machined brass acc. to EN 12164, CW614N
three-way handle with thermometer, red / blue, synthetic material PA66 GF30
PTFE
PTFE, EPDM
acc. to ISO228
acc. to ISO7/1

\square Operating data

Max. operating pressure:
Min. operating temperature:
Min. short-term temperature load:
Max. operating temperature:
Max. short-term temperature load:

PN 25 bar
$-10^{\circ} \mathrm{C}$ (water $0,5^{\circ} \mathrm{C}$)
$-30^{\circ} \mathrm{C}$
$110^{\circ} \mathrm{C}$ (water $110^{\circ} \mathrm{C}$ - no steam)
$150^{\circ} \mathrm{C}$

Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. Please note that EPDM gaskets will be affected by Mineral oils lubricants and thus lead to failure of the EPDM seals in the valves that use EPDM seals. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

\square Field of application

Multifunctional ball is used in installations as closing and filling-draining element. It can also be used for the indication of temperature of medium in the system. Because of its multifunctionality this valve can be used in plumbing, heating, cooling systems, industrial pipes and systems with potable water. Multifunctional ball valve is used in applications where the flow of the media hast to be reliably shut off. Ball valve should not be used as regulating element so it has to be fully opened or fully closed (the handle should not be in intermediate position). Position of the T-ball is marked with the shape of handle. HERZ multifunctional ball valve DZR is made from CW626N; this material has DZR properties (dezinfication resistant brass).

\square Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

© Lables on ball valves

回 Field of application

USUAL MOUNTING: Classic ball valve and fill/drain valve

USUAL MOUNTING
7 welds
7 possible leaks

NEW
3 welds 3 possible leaks

NEW: HERZ - multifunctional ball valve

HERZ - ball valve for pump

Datasheet 1 22XXXX

© Dimensions

1222923 (26)

1226803 (04)

1222933 (36)

Model	DN	Handle cover	T	NV	$\underset{[i n]}{\mathbf{G}}$	G1 $[\mathrm{in}]$	$\begin{gathered} \mathbf{L} \\ {[\mathrm{mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{L} 1}$	$\underset{[m m]}{\mathbf{A}}$	$\begin{gathered} \text { B } \\ {[\mathrm{mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{C}}$	$\underset{[m \mathrm{~m}]}{\mathbf{H}}$	Sw [mm]	Sw1 [mm]	Weight [kg]
1222903	25	Red	No	Yes	1"	1-1/2"	103	115	85	16	12,5	81,5	39	52	0,74
1222904	32	Red	No	Yes	1-1/4"	$2^{\prime \prime}$	118	131	85	18	13,5	86	48	65	1,09
1222905	25	Blue	No	Yes	1 "	1-1/2"	103	115	85	16	12,5	81,5	39	52	0,74
1222906	32	Blue	No	Yes	1-1/4"	2 "	118	131	85	18	13,5	86	48	65	1,09
12229	25	Red	Yes	Yes	1 "	1-1/2"	103	115	85	16	12,5	86,8	39	52	0,78
12229	32	Red	Yes	Yes	1-1/4"	2"	118	131	85	18	13,5	91,8	48	65	1,13
12229	25	Blue	Yes	Yes	1"	1-1/2"	103	115	85	16	12,5	86,8	39	52	0,78
1222916	32	Blue	Yes	Yes	1-1/4"	$2^{\prime \prime}$	118	131	85	18	13,5	91,8	48	65	1,13
1222923	25	Red	No	No	1"	1-1/2"	79,5	92,5	85	14	13	81,5	39	52	0,59
1222924	32	Red	No	No	1-1/4"	$2^{\prime \prime}$	89	102,5	85	16	13,5	86,8	48	65	0,89
12229	25	Blue	No	No	1 "	1-1/2"	79,5	92,5	85	14	13	81,5	39	52	0,59
1222926	32	Blue	No	No	1-1/4"	2 "	89	102,5	85	16	13,5	86,8	48	65	0,89
1222933	25	Red	Yes	No	1 "	1-1/2"	79,5	92,5	85	14	13	86,8	39	52	0,63
1222934	32	Red	Yes	No	1-1/4"	$2^{\prime \prime}$	89	102,5	85	16	13,5	91,8	48	65	0,93
122293	25	Blue	Yes	No	1 "	1-1/2"	79,5	92,5	85	14	13	86,8	39	52	0,63
1222936	32	Blue	Yes	No	1-1/4"	$2^{\prime \prime}$	89	102,5	85	16	13,5	91,8	48	65	0,93
1226803	25	Red	No	Yes	1"	1-1/2"	102	114,5	75	16	12,5	56	39	52	0,76
1226804	32	Red	No	Yes	1-1/4"	2 "	116	129	75	18	13,5	62	48	65	1,27
1226903	25	Red	No	No	1"	1-1/2"	79,5	92,5	75	14	13	56	39	52	0,59
1226904	32	Red	No	No	1-1/4"	$2^{\prime \prime}$	89	102,5	75	16	13,5	62	48	65	1,07

T = Thermometer
NV = Non-return valve

© Material and construction

Body (1 2229 XX):
Body (1 226X 0X):
Ball:
Spindle:
Handle :

Spindle seals:
Ball seals:
Internal threaded connectors:

\square Operating data

Max. operating pressure:
Min. operating temperature:
Max. operating temperature:
forged brass acc. to EN 12165, nickel plated, CW617N
forged brass acc. to EN 12165, CW617N
forged brass acc. to EN 12165, hollow, full bore, hard chrome plated, CW617N turned brass acc. to EN 12164, CW614N
T-handle, red, silumin
T-handle, red / blue, synthetic material PA66 GF30
T-handle with thermometer, red / blue, synthetic material PA66 GF30
PTFE
PTFE
acc. to ISO 228

PN 16 bar
$-30^{\circ} \mathrm{C}$ (water $0,5^{\circ} \mathrm{C}$)
$150^{\circ} \mathrm{C}$ (water $110^{\circ} \mathrm{C}$-no steam)

Medium:
Heating water quality according to ÖNORM H5195 or VDI-Standard 2035. The use of ethylene or propylene glycol in a mixing ratio $25-50 \%$ is allowed. Please refer to manufacturers documentation when using ethylene glycol products for frost and corrosion protection. HERZ ball valve for heating and chilled water is not suitable for usage of agressive medium (such as: acids, alkalis, combustible and explosive gases..) because it can destroy sealing components.

© Field of application

HERZ pump ball valves are used as closing valves in central heating and other installations. Main advantage of pump ball valves are possibility of fast connection of circulating pump through screw joint in a pair with articles 1 226X XX and 12229 XX.

© Assembly instruction

Pump ball valve is mounted in front of the central heating circulating pump. The circulation pump is mounted with screw joint G1-1/2" and G2" that is attached to the valve flange. When assembling, use suitable assembly tool that adapts to valve end connections.

Q Additional informations

For further informations about the field of application, brass, function principle, assembly, maintenance and disposal instructions see chapter "General information" on page 2.

\square Labels on ball valve

HERZ - ball valves for heating SPARE PARTS

Illustration	Description	Item number	Suitable with
	Lever handle RED $\mathrm{L}=90 \mathrm{~mm}$ Silumin	1638641	$\begin{aligned} & 1 \mathbf{2 2 0 1 0 1 (0 2)} \\ & 1 \mathbf{2 2 1 1} 01(02) \\ & 1 \mathbf{2 2 2 8} 01(02) \\ & 1 \mathbf{2 2 0 6} 01(02) \\ & 1 \mathbf{2 2 1 6} 01(02) \end{aligned}$
	Lever handle RED $\mathrm{L}=135 \mathrm{~mm}$ Silumin	1638642	$\begin{aligned} & 1220103(04) \\ & 1221103(04) \\ & 1222803(04) \\ & 1220603(04) \\ & 1221603(04) \end{aligned}$
	Lever handle RED $\mathrm{L}=180 \mathrm{~mm}$ Silumin	1638643	$\begin{aligned} & 1220105(06) \\ & 1221105(06) \\ & 1222805(06) \\ & 1220605(06) \\ & 1221605(06) \\ & 1222805(06) \end{aligned}$
	T - handle RED $\mathrm{L}=55 \mathrm{~mm}$ Silumin	1638644	1 $220111(12)$ 1 2211 $11(12)$ 1 2228 $01(02)$ 1 2206 $11(12)$ 1 2216 $11(12)$ 1 $226803(04)$ 1 $226903(04)$
	T - handle RED $\mathrm{L}=75 \mathrm{~mm}$ Silumin	1638645	$\begin{aligned} & 1220113(14) \\ & 1221113(14) \\ & 1222803(04) \\ & 1220613(14) \\ & 1221613(14) \end{aligned}$
	T - handle RED $\mathrm{L}=60 \mathrm{~mm}$ Synthetic material	1638646	$\begin{aligned} & 1220141(42) \\ & 1220641(42) \end{aligned}$
	T-handle BLUE $\mathrm{L}=60 \mathrm{~mm}$ Synthetic material	1638647	$\begin{aligned} & 1220151(52) \\ & 1220651(52) \end{aligned}$
	T - handle RED $\mathrm{L}=85 \mathrm{~mm}$ Synthetic material	1638648	$\begin{aligned} & 1220143(44) \\ & 1220643(44) \\ & 1222903(04) \\ & 1222923(24) \end{aligned}$
	T - handle BLUE $\mathrm{L}=85 \mathrm{~mm}$ Synthetic material	1638649	$\begin{array}{r} 1220153(54) \\ 1220653(54) \\ 1222905(06) \\ 1222925(26) \end{array}$
	T - handle RED $\mathrm{L}=120 \mathrm{~mm}$ Synthetic material	1638650	$\begin{aligned} & 12201 \text { 45(46) } \\ & 12206 \text { 45(46) } \end{aligned}$
	T - handle BLUE $\mathrm{L}=120 \mathrm{~mm}$ Synthetic material	1638651	$\begin{aligned} & 1220155(56) \\ & 1220655(56) \end{aligned}$

	T - handle RED L $=60 \mathrm{~mm}$ Synthetic material (thermometer not included)	1638652	$\begin{aligned} & 1220161(62) \\ & 1220661(62) \end{aligned}$
	T - handle BLUE $\mathrm{L}=60 \mathrm{~mm}$ Synthetic material (thermometer not included)	1638653	$\begin{aligned} & 1220171(72) \\ & 1220671(72) \end{aligned}$
	T - handle RED $\mathrm{L}=85 \mathrm{~mm}$ Synthetic material (thermometer not included)	1638654	$\begin{aligned} & 1220163(64) \\ & 1220663(64) \\ & 1222913(14) \\ & 1222933(34) \end{aligned}$
	T - handle BLUE $\mathrm{L}=85 \mathrm{~mm}$ Synthetic material (thermometer not included)	1638655	$\begin{array}{r} 1220173(74) \\ 1220673(74) \\ 1222915(16) \\ 1222935(36) \end{array}$
	T - handle RED $\mathrm{L}=120 \mathrm{~mm}$ Synthetic material (thermometer not included)	1638656	$\begin{aligned} & 1220165(66) \\ & 1220665(66) \end{aligned}$
	T - handle BLUE $\mathrm{L}=120 \mathrm{~mm}$ Synthetic material (thermometer not included)	1638657	$\begin{aligned} & 1220175(76) \\ & 1220675(76) \end{aligned}$
	Thermometer Scale 0-120 ${ }^{\circ} \mathrm{C}$	1638658	$\begin{aligned} & 1220161(66) \\ & 1220661(66) \\ & 1220171(76) \\ & 1220671(76) \end{aligned}$

	Lever handle RED $\mathrm{L}=90 \mathrm{~mm}$ Sheet steel - plated	1638659	$\begin{aligned} & 1220121(22) \\ & 1221121(22) \\ & 1 \\ & 1220621(22) \\ & 1221621(22) \end{aligned}$
	Lever handle RED $L=135 \mathrm{~mm}$ Sheet steel - plated	1638660	$\begin{aligned} & 1220123(24) \\ & 1221223(24) \\ & 1222023(24) \\ & 1221623(24) \\ & 1212) \end{aligned}$
	Lever handle RED $\mathrm{L}=180 \mathrm{~mm}$ Sheet steel - plated	1638661	$1220125(26)$ $1221125(26)$ $1220625(26)$ $1221625(26)$
	T - handle RED $L=60$ Sheet steel - plated	1638662	$\begin{aligned} & 1220131(32) \\ & 1221131(32) \\ & 1220631(32) \\ & 1221631(32) \end{aligned}$
	T - handle RED $\text { L = } 85$ Sheet steel - plated	1638663	$\begin{array}{r} 1220133(34) \\ 1221133(34) \\ 1220633(34) \\ 1221633(34) \end{array}$
	Lever handle RED $\mathrm{L}=60 \mathrm{~mm}$ Silumin	1638664	$\begin{aligned} & 1210009(00) \\ & 1216009(00) \\ & 1218009 \text { (00) } \end{aligned}$
	Lever handle RED $\mathrm{L}=90 \mathrm{~mm}$ Silumin	1638665	1210001 (02) 1216001 (02) $1218001(02)$ 1219001 (02)
	Lever handle RED $\mathrm{L}=135 \mathrm{~mm}$ Silumin	1638666	$\begin{aligned} & 1210003 \text { (04) } \\ & 121600303(04) \\ & 1218003(04) \\ & 12190 \\ & 103 \text { (04) } \end{aligned}$
	Lever handle RED $\mathrm{L}=180 \mathrm{~mm}$ Silumin	1638667	$1218005(06)$ $1216005(06)$ $1218005(06)$ $1219005(06)$
	Lever handle RED $\mathrm{L}=265 \mathrm{~mm}$ Silumin	1638668	$\begin{aligned} & 1210007 \\ & 1210008 \end{aligned}$

	T - handle RED $\mathrm{L}=40 \mathrm{~mm}$ Silumin	1638669	$\begin{aligned} & 1210019 \text { (10) } \\ & 1216019 \text { (10) } \\ & 1218019 \text { (10) } \end{aligned}$
	T- handle RED $\mathrm{L}=55 \mathrm{~mm}$ Silumin	1638670	$\begin{aligned} & 1210011 \text { (12) } \\ & 1216011 \text { (12) } \\ & 1218011 \text { (12) } \end{aligned}$
	T - handle RED $\mathrm{L}=75 \mathrm{~mm}$ Silumin	1638671	$\begin{gathered} 1210013(14) \\ 1216013(14) \\ 1218013(14) \\ 1241201 \end{gathered}$
	Lever handle RED $\mathrm{L}=70 \mathrm{~mm}$ Sheet steel - plated	1638672	1240201
TIT	Lever handle RED $\mathrm{L}=90 \mathrm{~mm}$ Sheet steel - plated	1638673	$\begin{array}{r} 1240202 \\ 1219021 \text { (22) } \\ 1219041 \text { (42) } \\ 1219061 \text { (62) } \end{array}$
$\text { [} 0$	Lever handle RED $\mathrm{L}=135 \mathrm{~mm}$ Sheet steel - plated	1638674	$\begin{array}{r} 1240203(04) \\ 1219023(24) \\ 1219043(44) \\ 1219063(64) \end{array}$
	Lever handle RED $\mathrm{L}=180 \mathrm{~mm}$ Sheet steel - plated	1638675	$\begin{array}{r} 1240205 \\ 1219025 \text { (26) } \\ 1219045 \text { (46) } \\ 1219065 \text { (66) } \end{array}$

	T - handle RED $L=60$ Sheet steel - plated	1638676	12402 (12)
	T - handle RED $L=85$ Sheet steel - plated	1638677	1240213 (14)
	Drain lever Synthetic material	1638678	$\begin{aligned} & 1240201 \text { (05) } \\ & 1240211 \text { (14) } \end{aligned}$
	Vent valve G1/8" Brass	1638679	$\begin{aligned} & 1240201 \text { (05) } \\ & 1240211 \text { (14) } \end{aligned}$
$\sqrt{(2)}$	Drain plug G1/8" Brass	1638680	$\begin{aligned} & 1240201 \text { (05) } \\ & 1240211 \text { (14) } \end{aligned}$
	T - handle RED Synthetic material (thermometer not included)	1638681	1241402 (04)
	T- handle BLUE Synthetic material (thermometer not included)	1638682	1241502 (05)
	Thermometer RED Scale 0-120 ${ }^{\circ} \mathrm{C}$	1638683	1241402 (04)
	Thermometer BLUE Scale 0-120 ${ }^{\circ} \mathrm{C}$	1638684	1241502 (05)

